
‹#› Het begint met een idee

Experiment design (basics)

Ivano Malavolta

Vrije Universiteit Amsterdam
2 Ivano Malavolta / S2 group / Empirical software engineering

Planning phases

Scope of this
lecture

Vrije Universiteit Amsterdam

Experiment design

Design principles

Basic design types

3 Ivano Malavolta / S2 group / Empirical software engineering

Roadmap

Vrije Universiteit Amsterdam

Goal: to determine the set of trials the experiment shall have to
make sure that the effect of the treatments is visible

4 Ivano Malavolta / S2 group / Empirical software engineering

Experiment design

Experiment design: how to organize and execute the trials

Vrije Universiteit Amsterdam
5

Example

● How do we combine subjects, objects and

treatments?

number of factors and treatments

Vrije Universiteit Amsterdam
6

What can you decide?

● Factor: image encoding algorithm

other factors?

● Treatments:

JPEG

PNG

● Objects: mobile apps

one app vs many apps

● How to “cover” all the relevant combinations
of treatments, objects, and subjects?

Vrije Universiteit Amsterdam
7 Ivano Malavolta / S2 group / Empirical software engineering

Design principles

● Randomization

Vrije Universiteit Amsterdam
8

Randomization

PROBLEM: when executing many trials, the chosen objects,
subjects and execution ordering may lead to biased results

SOLUTION: randomize the involved objects and subjects, and
the order in which trials are executed

Vrije Universiteit Amsterdam
9

Randomization

● Aim: remove the effects of a specific non-controlled

independent variable

● Group the subjects/objects by that variable and then

randomize

Examples:

● We randomly choose mobile apps from a dataset

● For each app we randomly assign a specific encoding algorithm for its

images

● We execute the apps in random order

Vrije Universiteit Amsterdam
10 Ivano Malavolta / S2 group / Empirical software engineering

Design principles

● Randomization

● Blocking

Vrije Universiteit Amsterdam
11

Blocking

PROBLEM: one factor influences our results but we want to
mitigate its effects

SOLUTION: split the sample in blocks with same (or similar)
level of this factor

Vrije Universiteit Amsterdam
12

Blocking

● The blocks are studied separately

● We DO NOT study the effects between the groups

○ e.g. no conclusions on the correlation between the effects of image encoding

and the type of device

eg, Main factor: image encoding algorithm {PNG, JPEG}

Blocked factor: type of device {low-end, high-end}

Block 1: run the apps only in low-end devices

Block 2: run the apps only in high-end devices

Vrije Universiteit Amsterdam
13

Why more than 2 factors?

● {PNG, JPEG} → energy consumption

● {PNG, JPEG} and {single_render, par_render} → energy consumption

○ factor vs block?

Ivano Malavolta / S2 group / Experiment design

Vrije Universiteit Amsterdam
14

How to choose between factor or block?

Ivano Malavolta / S2 group / Experiment design

Vrije Universiteit Amsterdam
15

How to choose between factors/blocks/etc?

Ivano Malavolta / S2 group / Experiment design

In the literature, the independent variables correspond to main factors and end up in the
research questions

Also co-factors end up in your RQs: these are at the same level of your main factor. You
want to investigate how the main factor and the co-factors influence each other

The other factors can be:

● Uncontrolled factors: they are just “small details“ in your experiment, you do not
want to investigate on their effect on the dependent variable)

● Fixed factors: they are the aspects that you fix in your experiment

e.g., you load your web apps only in Chrome, you use only Wifi connection, etc.

● Blocking factors: they are the factors that you suspect might have an influence on
your dependent variables, but you you use them only for “compartmentalizing” your
experiment

e.g., the type of device (or OS) since you do not want to directly compare the energy
consumed across two different devices since they might have a completely different
architecture

Vrije Universiteit Amsterdam
16 Ivano Malavolta / S2 group / Empirical software engineering

Design principles

● Randomization

● Blocking

● Balancing

Vrije Universiteit Amsterdam
17

Balancing

PROBLEM: many statistical analyses are more powerful and
simple when performed on balanced data

SOLUTION: consider the same (or similar) number of
subjects for each type of treatment

eg, Block 1: 20 apps

Block 2: 20 apps

Vrije Universiteit Amsterdam
18 Ivano Malavolta / S2 group / Empirical software engineering

Basic design types

Vrije Universiteit Amsterdam

We can have the following cases:

● 1 factor and 2 treatments (1F-2T)

● 1 factor and >2 treatments (1F-MT)

● 2 factors and 2 treatments (2F-2T)

● >2 factors, each one with >=2 treatments (MF-MT)

19 Ivano Malavolta / S2 group / Empirical software engineering

Basic design types

Basic

Vrije Universiteit Amsterdam
20 Ivano Malavolta / S2 group / Empirical software engineering

1 factor and 2 treatments

We assume to have 1 dependent variable P

Notation:
● 𝜇i : dependent variable mean for treatment i

○ 𝜇i = avg(P)
● yij: j-th measure of the dependent variable for treatment i

Example:
● We are seeing whether different image encoding algorithms impact

energy consumption of mobile apps
● Factor: encoding algorithm
● Treatments:

○ PNG
○ JPEG

● Dependent variable: consumed energy during common usage scenarios

Vrije Universiteit Amsterdam
21 Ivano Malavolta / S2 group / Empirical software engineering

1F-2T: fully randomized design

● Each treatment is randomly assigned to the experimental objects

● Same number of objects for each treatment (balancing)

Object
(Application)

Treatment 1
(PNG)

Treatment 2
(JPEG)

1 X

2 X

3 X

4 X

Examples of hypotheses:

H0 : 𝜇1 = 𝜇2

Ha : 𝜇1 != 𝜇2 or 𝜇1 > 𝜇2 or 𝜇1 < 𝜇2

Analyses:

● t-test (unpaired)

● Mann-Whitney test

Vrije Universiteit Amsterdam
22 Ivano Malavolta / S2 group / Empirical software engineering

1F-2T: paired comparison design

● Each treatment is applied on each object (crossover design)

● The order of the treatments is random

Object
(Application)

Treatment 1
(PNG)

Treatment 2
(JPEG)

1 1st 2nd

2 2nd 1st

3 2nd 1st

4 1st 2nd

Vrije Universiteit Amsterdam
23 Ivano Malavolta / S2 group / Empirical software engineering

1F-2T: paired comparison design

P

t

A1, JPEG

A1, PNG

tj

dj

𝜇d= avg(d0...n)

Vrije Universiteit Amsterdam
24 Ivano Malavolta / S2 group / Empirical software engineering

1F-2T: paired comparison design

Example of hypotheses:

H0 : 𝜇d = 0
Ha : 𝜇d != 0 or 𝜇d > 0 or 𝜇d < 0

Analyses:

● Paired t-test

● Sign test

● Wilcoxon

Vrije Universiteit Amsterdam
25

How to choose between the two design?

Object
(Application)

Treatment 1
(PNG)

Treatment 2
(JPEG)

1 1st 2nd

2 2nd 1st

3 2nd 1st

4 1st 2nd

Object
(Application)

Treatment 1
(PNG)

Treatment 2
(JPEG)

1 X

2 X

3 X

4 X

Vrije Universiteit Amsterdam
26 Ivano Malavolta / S2 group / Empirical software engineering

1 factor and >2 treatments

In this case the factor can have more than 2 values

Example:
● Factor: encoding algorithms
● Treatments:

○ PNG
○ JPEG
○ TIFF

● Dependent variable: consumed energy during common usage scenarios

Vrije Universiteit Amsterdam
27 Ivano Malavolta / S2 group / Empirical software engineering

1F-MT: fully randomized design

● Each treatment is randomly assigned to the experimental objects

● Same number of objects per each treatment (balancing)

Example of hypotheses:

H0 : 𝜇1 = 𝜇2 = 𝜇3 = … = 𝜇t

Ha : 𝜇i != 𝜇j for at least one pair
of (i,j)

Analyses:

● ANOVA (ANalysis Of
VAriance)

● Kruskal-Wallis

Object
(Application)

Treatment 1
(PNG)

Treatment 2
(JPEG)

Treatment 3
(TIFF)

1 X

2 X

3 X

4 X

5 X

6 X

Vrije Universiteit Amsterdam
28 Ivano Malavolta / S2 group / Empirical software engineering

1F-MT: Randomized complete block design

● Each treatment is applied on each object (crossover design)

● The order of the treatments is random

Object
(Application)

Treatment 1
(PNG)

Treatment 2
(JPEG)

Treatment 3
(TIFF)

1 1st 3rd 2nd

2 3rd 1st 2nd

3 2nd 3rd 1st

4 2nd 1st 3rd

5 3rd 2nd 1st

6 1st 2nd 3rd

Example of hypotheses:

H0 : 𝜇1 = 𝜇2 = 𝜇3 = … = 𝜇t

Ha : 𝜇i != 𝜇j for at least one pair
of (i,j)

Analyses:

● ANOVA

● Kruskal-Wallis

● Repeated Measures ANOVA

Vrije Universiteit Amsterdam
29 Ivano Malavolta / S2 group / Empirical software engineering

Some contents of lecture extracted from:

● Giuseppe Procaccianti’s lectures at VU

Acknowledgements

